Course C	Code: B010401T	Subject: P Course Title: Persp	hysics							
Course C	Code: B010401T	Course Title: Persp	actives of Modern							
	o mine the difference het		ectives of modern	Course Code: B010401T Course Title: Perspectives of Modern Physics & Basic Electronics						
	a amina tha difference hat	Course Outcomes (COs)								
1. Reco	ognize the difference bet	ecognize the difference between the structure of space & time in Newtonian & Relativistic mechanics.								
2. Unde	nderstand the physical significance of consequences of Lorentz transformation equations.									
3. Com	comprehend the wave-particle duality.									
4. Deve	Develop an understanding of the foundational aspects of Quantum Mechanics.									
5. Stud	Study the comparison between various biasing techniques.									
6. Stud	ly the classification of an	plifiers.								
7. Com	nprehend the use of feedb	back and oscillators.								
8. Com	nprehend the theory and v	working of optical fibers alo	ong with its applica	tions.						
	Credits:	4	Core Compulsory / Elective							
	Max. Marks:	25+75	Min. Passing Marks:							
	Total No. of Lectures-Tutorials-Practical (in hours per week): L-T-P: 4-0-0									
T T •4		т •			No. of					
Unit		Topics			Lectures					
		PART	<u>'A</u>							
		Perspectives of M	odern Physics							
		Relativity-Experiment	al Background							
Str	Structure of space & time in Newtonian mechanics and inertial & non-inertial frames. Galilean									
I tra	transformations. Newtonian relativity. Galilean transformation and Electromagnetism. Attempts to locate the Absolute Frame: Michelson-Morley experiment and significance of the null result. Einstein's postulates of special theory of relativity.									
loc										
Eir										
	Relativity-Relativistic Kinematics									
Str	Structure of space & time in Relativistic mechanics and derivation of Lorentz transformation									
equ	equations (4-vector formulation included). Consequences of Lorentz Transformation Equations									
II ^{(de}	(derivations & examples included): Transformation of Simultaneity (Relativity of simultaneity);									
Tra	Transformation of Length (Length contraction); Transformation of Time (Time dilation);									
Tra	Transformation of Velocity (Relativistic velocity addition); Transformation of Acceleration;									
Tra	Transformation of Mass (Variation of mass with velocity). Relation between Energy & Mass									
(E1	(Einstein's mass & energy relation) and Energy & Momentum.									
D	Inadequacies of Classical Mechanics									
	Particle Properties of Waves: Spectrum of Black Body radiation, Photoelectric effect, Compton									
	errect and their explanations based on Max Planck's Quantum hypothesis.									
Wa	wave Properties of Particles: Louis de Broglie's nypothesis of matter waves and their experimental									
ver	Introduction to Overture Mechanica									
М	Introduction to Quantum Mechanics									
	value in waves. Mainematical representation, wavelength, Concept of wave group, Group (particle)									
We	Wave Function: Functional form, Normalisation of wave function Orthogonal & Orthonormal									
wa	ave functions and Probabilistic interpretation of wave function based on Born Rule.									
IV vel Wa	ave Function: Functiona	al form, Normalisation of	wave function, O	rthogonal & Orthonormal	ormal					

PART B								
Basic Electronics & Introduction to Fiber Optics								
	Transistor Biasing							
v	Faithful amplification & need for biasing. Stability Factors and its calculation for transistor biasing	biasing						
	cuits for CE configuration: Fixed Bias (Base Resistor Method), Emitter Bias (Fixed Bias with							
	Emitter Resistor), Collector to Base Bias (Base Bias with Collector Feedback) &, Voltage Divider							
	Bias. Discussion of Emitter-Follower configuration.							
	Amplifiers							
	Classification of amplifiers based on Mode of operation (Class A, B, AB, C & D), Stages (single &							
	multi stage, cascade & cascode connections), Coupling methods (RC, Transformer, Direct & LC							
	couplings), Nature of amplification (Voltage & Power amplification) and Frequency capabilities							
	(AF, IF, RF & VF).	7						
VI	Theory & working of RC coupled voltage amplifier (Uses of various resistors & capacitors, and							
	Frequency response) and Transformer coupled power amplifier (calculation of Power, Effect of							
	temperature, Use of heat sink & Power dissipation).							
	Calculation of Amplifier Efficiency (power efficiency) for Class A Series-Fed, Class A	s A Series-Fed, Class A						
	Transformer Coupled, Class B Series-Fed and Class B Transformer Coupled amplifiers.							
	Feedback & Oscillator Circuits							
	Feedback Circuits: Effects of positive and negative feedback. Voltage Series, Voltage Shunt,							
	Current Series and Current Shunt feedback connection types and their uses for specific amplifiers.							
	Estimation of Input Impedance, Output Impedance, Gain, Stability, Distortion, Noise and Band							
X/T	Width for Voltage Series negative feedback and their comparison between different negative							
VII	feedback connection types.							
	Oscillator Circuits: Use of positive feedback for oscillator operation. Barkhausen criterion for self-							
	sustained oscillations. Feedback factor and frequency of oscillation for RC Phase Shift oscillator							
	nd Wein Bridge oscillator. Qualitative discussion of Reactive Network feedback oscillators (Tuned							
	oscillator circuits): Hartley & Colpitt oscillators.							
	Introduction to Fiber Optics							
VI	Basics of Fiber Optics, step index fiber, graded index fiber, light propagation through an optical	8						
VIII	fiber, acceptance angle & numerical aperture, qualitative discussion of fiber losses and applications	0						
	of optical fibers.							
	Suggested Readings							
PART A								
1.	1. A. Beiser, Shobhit Mahajan, "Concepts of Modern Physics: Special Indian Edition" McGraw Hill 2009 6e							
2.	2. John R. Taylor, Chris D. Zafiratos, Michael A.Dubson, "Modern Physics for Scientists and Engineers".							
	Prentice-Hall of India Private Limited, 2003, 2e							
3.	A. Serway, C.J. Moses, and C.A. Moyer, "Modern Physics", Cengage Learning India Pvt. Ltd. 2004, 3e							
4.	. Resnick, "Introduction to Special Relativity", Wiley India Private Limited, 2007							
5.	R. Murugeshan, Kiruthiga Sivaprasath, "Modern Physics", S. Chand Publishing, 2019, 18e							

PART B

- 1. R.L. Boylestad, L. Nashelsky, "Electronic Devices and Circuit Theory", Prentice-Hall of India Pvt. Ltd., 2015, 11e
- 2. J. Millman, C.C. Halkias, Satyabrata Jit, "Electronic Devices and Circuits", McGraw Hill, 2015, 4e
- 3. B.G. Streetman, S.K. Banerjee, "Solid State Electronic Devices", Pearson Education India, 2015, 7e
- 4. J.D. Ryder, "Electronic Fundamentals and Applications", Prentice-Hall of India Private Limited, 1975, 5e
- 5. John M. Senior, "Optical Fiber Communications: Principles and Practice", Pearson Education Limited, 2010, 3e
- 6. John Wilson, John Hawkes, "Optoelectronics: Principles and Practice", Pearson Education Limited, 2018, 3e
- 7. S.L. Gupta, V. Kumar, "Hand Book of Electronics", Pragati Prakashan, Meerut, 2016, 43e

Books published in Hindi & Other Reference / Text Books may be suggested / added to this list by individual Universities.

Suggestive Digital Platforms / Web Links

- 1. MIT Open Learning Massachusetts Institute of Technology, https://openlearning.mit.edu/
- 2. National Programme on Technology Enhanced Learning (NPTEL), <u>https://www.youtube.com/user/nptelhrd</u>
- 3. Uttar Pradesh Higher Education Digital Library, <u>http://heecontent.upsdc.gov.in/SearchContent.aspx</u>
- 4. Swayam Prabha DTH Channel, <u>https://www.swayamprabha.gov.in/index.php/program/current_he/8</u>

Course Prerequisites

Passed Semester I, Theory Paper-1 (B010101T)

This course can be opted as an Elective by the students of following subjects

Open to all

Suggested Continuous Internal Evaluation (CIE) Methods

20 marks for Test / Quiz / Assignment / Seminar 05 marks for Class Interaction

Suggested Equivalent Online Courses

- 1. Swayam Government of India, <u>https://swayam.gov.in/explorer?category=Physics</u>
- 2. National Programme on Technology Enhanced Learning (NPTEL), <u>https://nptel.ac.in/course.html</u>
- 3. Coursera, https://www.coursera.org/browse/physical-science-and-engineering/physics-and-astronomy
- 4. edX, https://www.edx.org/course/subject/physics
- 5. MIT Open Course Ware Massachusetts Institute of Technology, https://ocw.mit.edu/courses/physics/

Further Suggestions

- Other Digital Platforms / Web Links and Equivalent Online Courses may be suggested / added to the respective lists by individual Universities.
- In End-Semester University Examinations, equal weightage should be given to Part A (units I to IV) and Part B (units V to VIII) while framing the questions.

Progra	amme/Class: Diploma	Year: Second		Semester: Fourth			
		Subject: P	hysics				
Cours	ourse Code: B010402P Course Title: Basic Electronics Instrumentation						
		Course Outco	mes (COs)				
Basic	Electronics instrumentation	on has the most striking	impact on the in	dustry wherever the cor	nponents /		
nstru	ments are used to study a	nd determine the electroni	c properties. Meas	surement precision and pe	erfection is		
chiev	ved through Lab Experime	nts. Online Virtual Lab Ex	periments give an	insight in simulation tech	niques and		
orovic	le a basis for modeling.						
	Credits:	2	Core Compulsory / Elective				
	Max. Marks:	25+75	Min. Passing Marks:				
	Total No. of	Lectures-Tutorials-Practica	al (in hours per wee	ek): L-T-P: 0-0-4			
Unit		Topics			No. of Lectures		
	Lab Experiment List						
	1. Transistor Bias Sta	bility					
	2. Comparative Study of CE, CB and CC amplifier						
	3. Clippers and Clam	pers					
	4. Study of Emitter F	ollower					
	5. Frequency response of single stage RC coupled amplifier						
	6. Frequency respons	e of single stage Transform	ner coupled amplifie	er			
	7. Effect of negative	feedback on frequency resp	onse of RC couple	d amplifier			
	8. Study of Schmitt T	rigger					
	9. Study of Hartley o	scillator					
	10. Study of Wein Bri	dge oscillator			_		
	Online Virtual Lab Experiment List / Link						
	Virtual Labs an initiative o						
	http://vlabs.iitkgp.ac.in/psac/#						
	1. Diode as Clippers						
	2. Diode as Clampers	5					
	3. BJT as switch and	Load Lines					
	Virtual Labs an initiative o	f MHRD Govt. of India					
	http://vlabs.iitkgp.ac.in/be/	<u>#</u>					
	4. RC frequency resp	onse					
	Virtual Labs at Amrita Vis	hwa Vidyapeetham					
	https://vlab.amrita.edu/index.php?sub=1&brch=201						
	5. Hartley oscillator						
	6. Colpitt oscillator						

- 7. Fiber Optic Analog and Digital Link
- 8. Fiber Optic Bi-directional Communication
- 9. Wavelength Division Multiplexing
- 10. Measurement of Bending Losses in Optical Fiber
- 11. Measurement of Numerical Aperture
- 12. Study of LED and Detector Characteristics

Suggested Readings

1. R.L. Boylestad, L. Nashelsky, "Electronic Devices and Circuit Theory", Prentice-Hall of India Pvt. Ltd., 2015, 11e

- 2. J. Millman, C.C. Halkias, Satyabrata Jit, "Electronic Devices and Circuits", McGraw Hill, 2015, 4e
- 3. B.G. Streetman, S.K. Banerjee, "Solid State Electronic Devices", Pearson Education India, 2015, 7e
- 4. J.D. Ryder, "Electronic Fundamentals and Applications", Prentice-Hall of India Private Limited, 1975, 5e
- 5. John M. Senior, "Optical Fiber Communications: Principles and Practice", Pearson Education Limited, 2010, 3e
- 6. John Wilson, John Hawkes, "Optoelectronics: Principles and Practice", Pearson Education Limited, 2018, 3e
- 7. S.L. Gupta, V. Kumar, "Hand Book of Electronics", Pragati Prakashan, Meerut, 2016, 43e

Books published in Hindi & Other Reference / Text Books may be suggested / added to this list by individual Universities.

Suggestive Digital Platforms / Web Links

- 1. Virtual Labs an initiative of MHRD Govt. of India, <u>http://vlabs.iitkgp.ac.in/psac/#</u>
- 2. Virtual Labs an initiative of MHRD Govt. of India, <u>http://vlabs.iitkgp.ac.in/be/#</u>
- 3. Virtual Labs at Amrita Vishwa Vidyapeetham, <u>https://vlab.amrita.edu/index.php?sub=1&brch=201</u>
- 4. Virtual Labs at Amrita Vishwa Vidyapeetham, <u>http://vlab.amrita.edu/index.php?sub=59&brch=269</u>
- 5. Digital Platforms /Web Links of other virtual labs may be suggested / added to this lists by individual Universities.

Course Prerequisites

Opted / Passed Semester IV, Theory Paper-1 (B010401T)

This course can be opted as an Elective by the students of following subjects

Botany / Chemistry / Computer Science / Mathematics / Statistics / Zoology

Suggested Continuous Internal Evaluation (CIE) Methods

15 marks for Record File (depending upon the no. of experiments performed out of the total assigned experiments) 05 marks for Viva Voce

05 marks for Class Interaction

Suggested Equivalent Online Courses

Further Suggestions

- The institution may add / modify / change the experiments of the same standard in the subject.
- The institution may suggest a minimum number of experiments (say 6) to be performed by each student per semester from the Lab Experiment List.
- The institution may suggest a minimum number of experiments (say 3) to be performed by each student per semester from the Online Virtual Lab Experiment List / Link.