Semester III, Paper-1 (Theory) Course Title: Chemical Dynamics & Coordination Chemistry

Programme: Diploma in Chemical Dynamics and Analytical TechniquesYear: TwoSemester: IIIPaper-1TheorySubject: CCourse Code:B020301TCourse Title: Chemical Dynamics & CoordinationCourse outcomes:Upon successful completion of this course students should be able to describe the the three states of matter and describe the different physical properties of each state of matter. kinetic theory of crystallography , liquid state and liquid crystals, conductometric, potentiometric, optical methods, spectrophotometer technique to study Chemical kinetics and chemical equilibrium. After the completion	n Chemistry	
Course Code:B020301T Course Title: Chemical Dynamics & Coordination Course outcomes: Upon successful completion of this course students should be able to describe the three states of matter and describe the different physical properties of each state of matter. kinetic theo of crystallography , liquid state and liquid crystals, conductometric, potentiometric, optical methods,	n Chemistry	
Course outcomes : Upon successful completion of this course students should be able to describe the three states of matter and describe the different physical properties of each state of matter. kinetic theo of crystallography, liquid state and liquid crystals, conductometric, potentiometric, optical methods,	•	
the three states of matter and describe the different physical properties of each state of matter. kinetic theo of crystallography, liquid state and liquid crystals, conductometric, potentiometric, optical methods,	characteristic of	
of crystallography, liquid state and liquid crystals, conductometric, potentiometric, optical methods,	characteristic of	
	ry of gases, laws	
spectrophotometer technique to study Chemical kinetics and chemical equilibrium. After the completion	polarimetry and	
species provident de la stady en	on of the course,	
Students will be able to understand .metal- ligand bonding in transition metal complexes, thermodyn	amic and kinetic	
aspects of metal complexes.		
Credits: 4 Elective		
Max. Marks: 25+75 Min. Passing Marks:	Min. Passing Marks:	
Total No. of Lectures = 60		
Unit Topics	No. of Lectures	
Chemical Kinetics: Rate of a reaction, molecularity and order of reaction, concentration dependent		
of rates, mathematical characteristic of simple chemical reactions - zero order, first order,	second	
order, pseudo order, half-life and mean life. Determination of the order of reaction – diffe	rential	
method, method of integration, half-life method and isolation method.		
I Theories of chemical kinetics: Effect of temperature on rate of reaction, Arrhenius equip	ation, 10	
concept of activation energy. Simple collision theory based on hard sphere model, transitio	n state	
theory (equilibrium hypothesis). Expression for the rate constant based on equilibrium consta	nt and	
thermodynamic aspects (no derivation).		
Chemical Equilibrium : Equilibrium constant and free energy, thermodynamic derivation	of law	
II of mass action. Le-Chatelier's principle. reaction isotherm and reaction isochore – Clap	eyron- 5	
Clausius equation and its applications.		
Phase Equilibrium : Statement and meaning of the terms-phase, component and degree of free	edom,	
derivation of Gibbs phase rule, phase equilibria of one component system – water, CO_2 and sy		
	07	
III Phase equilibria of two component systems – Solid - liquid equilibria , simple eutectic – Bi-C	d, Pb- 05	

	Kinetic theories of gases			
	Gaseous State: Postulates of kinetic theory of gases, deviation from ideal behavior, van der Waals			
	equation of state.			
	Critical phenomena: PV isotherms of real gases, continuity of states, the isotherms of Van der			
IV	Waals equation, relationship between critical constants and Van der Waals constants, the law of	10		
1.	corresponding states, reduced equation of state.			
	Molecular Velocities: Qualitative discussion of the Maxwell's distribution of molecular velocities,			
	collision number, mean free path and collision diameter.			
	Liquid State			
	Liquid State: Intermolecular forces, structure of liquids (a qualitative description). Structural			
\mathbf{V}	differences between solids, liquids and gases. Liquid crystals: Difference between liquid crystal,	5		
·	solid and liquid. Classification, structure of nematic and cholesterol phases.	_		
	Liquids in solids (gels): Classification, preparation and properties, inhibition, general application			
	Coordination Chemistry			
	Werner's theory of coordination complexes, classification of ligands, ambidentate ligands, chelates,			
VI	coordination numbers, IUPAC nomenclature of coordination complexes (up to two metal centers),	5		
	Isomerism in coordination compounds, constitutional and stereo isomerism, geometrical and optical			
	isomerism in square planar and octahedral complexes.			
	Theories of Coordination Chemistry			
	I Metal-ligand bonding in transition metal complexes, limitations of valance bond theory, an			
	elementary idea of crystal field theory, crystal field splitting in octahedral, tetrahedral and square			
VII	planner complexes, John teller effect, factors affecting the crystal-field parameters.	10		
	II. Thermodynamic and kinetic aspects of metal complexes: A brief outline of thermodynamic			
	stability of metal complexes and factors affecting the stability, stability constants of complexes and			
	their determination, substitution reactions of square planar complexes			
	Inorganic Spectroscopy and Magnetism I)Electronic spectra of Transition Metal Complexes			
	Types of electronic transitions, selection rules for d-d transitions, spectroscopic ground states,			
VIII	spectrochemical series, Orgel-energy level diagram for d1 and d9 states, discussion of the electronic	10		
,	spectrum of $[Ti(H_2O)_6]^{3+}$ complex ion.	2.0		
	II)Magnetic properties of transition metal complexes, types of magnetic behaviour, methods of			
	determining magnetic susceptibility, spin-only formula, L-S coupling, correlation of μ s and μ eff			

values, orbital contribution to magnetic moments, application of magnetic moment data for 3d-metal complexes.

Suggested Readings:

- 1. Atkins, P. W. & Paula, J. de Atkin's Physical Chemistry Ed., Oxford University Press 13 (2006).
- 2. Ball, D. W. Physical Chemistry Thomson Press, India (2007).
- 3. Castellan, G. W. Physical Chemistry 4th Ed. Narosa (2004).
- 4. Cotton, F.A, Wilkinson, G and Gaus, P. L , Basic Inorganic Chemistry, 3rd Edition , Wiley 1995
- 5. Lee, J.D, Concise Inorganic Chemistry 4th Edition ELBS, 1977
- 6. Douglas, B, McDaniel , D and Alexander, J , Concepts of Models of Inorganic Chemistry, John Wiley & Sons; 3rd edition , 1994
- 7. Shriver, D.E Atkins, P.W and Langford, C.H., Inorganic Chemistry, Oxford University Press, 1994.
- 8. Porterfield ,W.W, Inorganic Chemistry ,Addison Wesley 1984.
- 9. Sharpe, A.G, Inorganic Chemistry, ELBS, 3RD edition, 1993
- **10.** Miessler, G.L, Tarr, D.A, Inorganic Chemistry, 2nd edition, Prentice Hall, 2001

Note: For the promotion of Hindi language, course books published in Hindi may be prescribed by the University Suggestive digital platforms web links-

Suggestive digital platforms web links:

- 11. <u>https://swayam.gov.in/</u>
- 12. https://www.coursera.org/learn/physical-chemistry
- 13. https://www.mooc-list.com/tags/physical-chemistry
- 14. https://www.openlearning.com/courses/introduction-to-physical-chemistry/
- 15. <u>https://www.my-mooc.com/en/categorie/chemistry</u>
- 16. <u>https://onlinecourses.swayam2.ac.in/nce19_sc15/preview</u>
- 17. https://swayam.gov.in/

18. https://www.coursera.org/browse/physical-science-and-engineering/chemistry

This course can be opted as an elective by the students of following subjects: Chemistry in 12th Class

Suggested Continuous Evaluation Methods: Students can be evaluated on the basis of score obtained in a mid-term exam, together with the performance of other activities which can include short exams, in-class or on-line tests, home assignments, group discussions or oral presentations, among others .

Or

Assessment and presentation of Assignment	(10 marks)
04 Unit tests (Objective): Max marks of each unit test = 10 (average of all 04 unit tests)	(10 marks)
Overall performance throughout the semester (Discipline, participation in different activities)	(05 marks)

Course prerequisites: To study this course, a student must have had the chemistry in class 12th , Physics in Class 12th

Suggested equivalent online courses:

.....

Further Suggestions:

.....

Semester III, Paper-2 (Practical): Course Title: Physical Analysis

Programme: Diploma in Chemical Dynamics and Analytical Techniques		Year: Tw	70	Semester: III	
	Practical paper-2			Subject: Chemistry	
Course Code: B020302P Course Code: B020302P					
Course O	utcomes: Upon successfu	al completion of this c	ourse studen	ts should be able to calibrate apparatus a	nd prepare
solutions	of various concentration	s, estimation of com	ponents thro	ugh volumetric analysis; to perform di	latometric
experimen	ts: one and two compone	nt phase equilibrium e	xperiments.		
	Credits: 4			Elective	
	Max. Marks: 25	+75		Min. Passing Marks:	
	Practical			60 h	
Unit			Topics		No of Lectures
 Calibration of fractional weights, pipettes and burettes. Preparation of standards solutions. Dilution 0.1 M to 0.001 M solutions. Mole Concept and Concentration Units :Mole Concept, molecular weight, formula weight, a equivalent weight. Concentration units: Molarity, Formality, Normality, Molality, Mole fraction Percent by weight, Percent by volume, Parts per thousand, Parts per million, Parts per billion, p pOH, milli equivalents, Milli moles 					20
п	 Surface Tension and Viscosity 1. Determination of surface tension of pure liquid or solution 2. Determination of viscosity of liquid pure liquid or solution 				06
III	 Boiling point and Transition Temperature Boiling point of common organic liquid compounds ANY FIVE]nbutylalcohol, cyclohexanol, ethyl methyl ketone, cyclohexanone, acetylacetone, isobutyl methyl ketone, isobutyl alcohol, acetonitrile, benzaldehyde and acetophenone. [Boiling points of the chosen organic compounds should preferably be within 180^oC]. Transition Temperature, Determination of the transition temperature of the given substance by thermometric /dialometric method (e.g. MnCl₂.4H₂O/SrBr₂.2H₂O) 				14
IV	Phase Equilibrium			20	

1. To study the effect of a solute (e.g. NaCl, succinic acid) on the critical solution temperature of					
two partially miscible liquids (e.g. phenolw	two partially miscible liquids (e.g. phenolwater system) and to determine the concentration of				
that solute in the given phenol-water system					
2. To construct the phase diagram of two com	ponent (e.g. diphenylamine – benzophenone) system				
by cooling curve method.					
Suggested Readings:	·				
 Skoog .D.A., West.D.M and Holler .F.J., "Analytical Chemistry: An Introduction", 7th edition, Saunders college publishing, Philadelphia,(2010). 					
2. Larry Hargis.G" Analytical Chemistry: Principles	and Techniques" Pearson [©] (1988)				
Note: For the promotion of Hindi language, course books					
Suggestive digital platforms web links					
1. <u>https://www.labster.com/chemistry-virtual-labs/</u>					
2. <u>https://www.vlab.co.in/broad-area-chemical-scienc</u>	es				
3. <u>http://chemcollective.org/vlabs</u>					
This course can be opted as an elective by the studen	its of following subjects: Chemistry in 12 th Class				
Constant of Constinuous Freeloction Matheday					
Suggested Continuous Evaluation Methods:	(10 modes)				
Viva voce	(10 marks)				
Mock test	(10 marks)				
Overall performance (05marks)					
Course prerequisites: To study this course, a student	t must have Opted Sem-III, Theory Ppaer-I				
Suggested equivalent online courses:					
Further Suggestions:					